Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.746
Filtrar
1.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560776

RESUMO

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Assuntos
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
3.
Int J Biol Macromol ; 265(Pt 2): 130917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513899

RESUMO

Capsule polysaccharide is an important virulence factor of Klebsiella pneumoniae (K. pneumoniae), which protects bacteria against the host immune response. A promising therapeutic approach is using phage-derived depolymerases to degrade the capsular polysaccharide and expose and sensitize the bacteria to the host immune system. Here we determined the cryo-electron microscopy (cryo-EM) structures of a bacteriophage tail-spike protein against K. pneumoniae K64, ORF41 (K64-ORF41) and ORF41 in EDTA condition (K64-ORF41EDTA), at 2.37 Å and 2.50 Å resolution, respectively, for the first time. K64-ORF41 exists as a trimer and each protomer contains a ß-helix domain including a right-handed parallel ß-sheet helix fold capped at both ends, an insertion domain, and one ß-sheet jellyroll domain. Moreover, our structural comparison with other depolymerases of K. pneumoniae suggests that the catalytic residues (Tyr528, His574 and Arg628) are highly conserved although the substrate of capsule polysaccharide is variable. Besides that, we figured out the important residues involved in the substrate binding pocket including Arg405, Tyr526, Trp550 and Phe669. This study establishes the structural and functional basis for the promising phage-derived broad-spectrum activity depolymerase therapeutics and effective CPS-degrading agents for the treatment of carbapenem-resistant K. pneumoniae K64 infections.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Bacteriófagos/genética , Microscopia Crioeletrônica , Ácido Edético , Carbapenêmicos
4.
Nat Commun ; 15(1): 2558, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519509

RESUMO

Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.


Assuntos
Proteínas de Bactérias , Peroxidase , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Microscopia Crioeletrônica , Peroxidases/metabolismo
5.
Eur Biophys J ; 53(3): 147-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456905

RESUMO

Phosphopantetheine adenylyltransferase (EC. 2.7.7.3, PPAT) catalyzes the penultimate step of the multistep reaction in the coenzyme A (CoA) biosynthesis pathway. In this step, an adenylyl group from adenosine triphosphate (ATP) is transferred to 4'-phosphopantetheine (PNS) yielding 3'-dephospho-coenzyme A (dpCoA) and pyrophosphate (PPi). PPAT from strain C3 of Klebsiella pneumoniae (KpPPAT) was cloned, expressed and purified. It was crystallized using 0.1 M HEPES buffer and PEG10000 at pH 7.5. The crystals belonged to tetragonal space group P41212 with cell dimensions of a = b = 72.82 Å and c = 200.37 Å. The structure was determined using the molecular replacement method and refined to values of 0.208 and 0.255 for Rcryst and Rfree factors, respectively. The structure determination showed the presence of three crystallographically independent molecules A, B and C in the asymmetric unit. The molecules A and B are observed in the form of a dimer in the asymmetric unit while molecule C belongs to the second dimer whose partner is related by crystallographic twofold symmetry. The polypeptide chain of KpPPAT folds into a ß/α structure. The conformations of the side chains of several residues in the substrate binding site in KpPPAT are significantly different from those reported in other PPATs. As a result, the modes of binding of substrates, phosphopantetheine (PNS) and adenosine triphosphate (ATP) differ considerably. The binding studies using fluorescence spectroscopy indicated a KD value of 3.45 × 10-4 M for ATP which is significantly lower than the corresponding values reported for PPAT from other species.


Assuntos
Trifosfato de Adenosina , Klebsiella pneumoniae , Nucleotidiltransferases , Klebsiella pneumoniae/metabolismo , Cristalografia por Raios X , Coenzima A/química , Coenzima A/metabolismo
6.
OMICS ; 28(3): 138-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478777

RESUMO

Klebsiella pneumoniae is an opportunistic multidrug-resistant bacterial pathogen responsible for various health care-associated infections. The prediction of proteins that are essential for the survival of bacterial pathogens can greatly facilitate the drug development and discovery pipeline toward target identification. To this end, the present study reports a comprehensive computational approach integrating bioinformatics and systems biology-based methods to identify essential proteins of K. pneumoniae involved in vital processes. From the proteome of this pathogen, we predicted a total of 854 essential proteins based on sequence, protein-protein interaction (PPI) and genome-scale metabolic model methods. These predicted essential proteins are involved in vital processes for cellular regulation such as translation, metabolism, and biosynthesis of essential factors, among others. Cluster analysis of the PPI network revealed the highly connected modules involved in the basic functionality of the organism. Further, the predicted consensus set of essential proteins of K. pneumoniae was evaluated by comparing them with existing resources (NetGenes and PATHOgenex) and literature. The findings of this study offer guidance toward understanding cell functionality, thereby facilitating the understanding of pathogen systems and providing a way forward to shortlist potential therapeutic candidates for developing novel antimicrobial agents against K. pneumoniae. In addition, the research strategy presented herein is a fusion of sequence and systems biology-based approaches that offers prospects as a model to predict essential proteins for other pathogens.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Biologia Computacional/métodos , Biologia de Sistemas , Descoberta de Drogas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Phytomedicine ; 126: 155421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430819

RESUMO

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Minociclina/uso terapêutico , Espectrometria de Massas em Tandem , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Alcaloides Indólicos/farmacologia , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
8.
mSphere ; 9(3): e0082223, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38436228

RESUMO

The type VI secretion system (T6SS) serves as a crucial molecular weapon in interbacterial competition and significantly influences the adaptability of bacteria in their ecological niche. However, the distribution and function of T6SS in clinical Klebsiella pneumoniae, a common opportunistic nosocomial pathogen, have not been fully elucidated. Here, we conducted a genomic analysis of 65 clinical K. pneumoniae isolates obtained from patients with varying infections. Genes encoding a T6SS cluster present in all analyzed strains of K. pneumoniae, and strains with identical sequence type carried structurally and numerically identical T6SS. Our study also highlights the importance of selecting conserved regions within essential T6SS genes for PCR-based identification of T6SS in bacteria. Afterward, we utilized the predominant sequence type 11 (ST11) K. pneumoniae HS11286 to investigate the effect of knocking out T6SS marker genes hcp or vgrG. Transcriptome analysis identified a total of 1,298 co-upregulated and 1,752 co-downregulated differentially expressed genes in both mutants. Pathway analysis showed that only Δhcp mutant exhibited alterations in transport, establishment of localization, localization, and cell processes. The absence of hcp or vgrG gene suppressed the expression of other T6SS-related genes within the locus I cluster. Additionally, interbacterial competition experiments showed that hcp and vgrG are essential for competitive ability of ST11 K. pneumoniae HS11286. This study furthers our understanding of the genomic characteristics of T6SS in clinical K. pneumoniae and suggests the involvement of multiple genes in T6SS of strain HS11286. IMPORTANCE: Gram-negative bacteria use type VI secretion system (T6SS) to deliver effectors that interact with neighboring cells for niche advantage. Klebsiella pneumoniae is an opportunistic nosocomial pathogen that often carries multiple T6SS loci, the function of which has not yet been elucidated. We performed a genomic analysis of 65 clinical K. pneumoniae strains isolated from various sources, confirming that all strains contained T6SS. We then used transcriptomics to further study changes in gene expression and its effect on interbacterial competition following the knockout of key T6SS genes in sequence type 11 (ST11) K. pneumoniae HS11286. Our findings revealed the distribution and genomic characteristics of T6SS in clinical K. pneumoniae. This study also described the overall transcriptional changes in the predominant Chinese ST11 strain HS11286 upon deletion of crucial T6SS genes. Additionally, this work provides a reference for future research on the identification of T6SS in bacteria.


Assuntos
Infecção Hospitalar , Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Genômica , Perfilação da Expressão Gênica , RNA Mensageiro/metabolismo
9.
Microbiol Spectr ; 12(3): e0301723, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315028

RESUMO

The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-ß-lactamase-1 (blaNDM-1) is found in Enterobacteriaceae including K. pneumoniae. The blaNDM-1 is capable of hydrolyzing ß-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of blaNDM-1 gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the blaNDM-1 gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the blaNDM-1 gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
10.
Proc Natl Acad Sci U S A ; 121(9): e2317322121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377209

RESUMO

The ubiquitous RNA chaperone Hfq is involved in the regulation of key biological processes in many species across the bacterial kingdom. In the opportunistic human pathogen Klebsiella pneumoniae, deletion of the hfq gene affects the global transcriptome, virulence, and stress resistance; however, the ligands of the major RNA-binding protein in this species have remained elusive. In this study, we have combined transcriptomic, co-immunoprecipitation, and global RNA interactome analyses to compile an inventory of conserved and species-specific RNAs bound by Hfq and to monitor Hfq-mediated RNA-RNA interactions. In addition to dozens of RNA-RNA pairs, our study revealed an Hfq-dependent small regulatory RNA (sRNA), DinR, which is processed from the 3' terminal portion of dinI mRNA. Transcription of dinI is controlled by the master regulator of the SOS response, LexA. As DinR accumulates in K. pneumoniae in response to DNA damage, the sRNA represses translation of the ftsZ transcript by occupation of the ribosome binding site. Ectopic overexpression of DinR causes depletion of ftsZ mRNA and inhibition of cell division, while deletion of dinR antagonizes cell elongation in the presence of DNA damage. Collectively, our work highlights the important role of RNA-based gene regulation in K. pneumoniae and uncovers the central role of DinR in LexA-controlled division inhibition during the SOS response.


Assuntos
Klebsiella pneumoniae , Pequeno RNA não Traduzido , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Pequeno RNA não Traduzido/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Divisão Celular/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Regulação Bacteriana da Expressão Gênica
11.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338743

RESUMO

Efflux pumps play important roles in bacterial detoxification and some of them are stress-response elements that are up-regulated when the host is treated with antibiotics. However, efflux pumps that are down-regulated by stimulations are rarely discovered. Herein, we analyzed multiple transcriptome data and discovered a special (Major Facilitator Superfamily) MFS efflux pump, KpsrMFS, from Klebsiella pneumoniae, which was down-regulated when treated with antibiotics or extra carbon sources. Interestingly, overexpression of kpsrmfs resulted in halted cell growth in normal conditions, while the viable cells were rarely affected. The function of KpsrMFS was further analyzed and this efflux pump was determined to be a proton-driven transporter that can reduce the intracellular tetracycline concentration. In normal conditions, the expression of kpsrmfs was at a low level, while artificial overexpression of it led to increased endogenous reactive oxygen species (ROS) production. Moreover, by comparing the functions of adjacent genes of kpsrmfs, we further discovered another four genes that can confer similar phenotypes, indicating a special regulon that regulates cell growth. Our work provides new insights into the roles of efflux pumps and suggests a possible regulon that may regulate cell growth and endogenous ROS levels.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
12.
Sci Rep ; 14(1): 3148, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326428

RESUMO

Antimicrobial resistance has emerged as one of the leading public health threats of the twenty-first century. Gram-negative pathogens have been a major contributor to the declining efficacy of antibiotics through both acquired resistance and tolerance. In this study, a pan-drug resistant (PDR), NDM-1 and CTX-M-15 co-producing isolate of K. pneumoniae, CDC Nevada, (Kp Nevada) was exposed to the clinical combination of aztreonam + ceftazidime/avibactam (ATM/CAZ/AVI) to overcome metallo-ß-lactamases. Unexpectedly, the ß-lactam combination resulted in long filamentous cell formation induced by PBP3 inhibition over 168 h in the hollow fiber infection model experiments with eventual reversion of the total population upon drug removal. However, the addition of imipenem to the two drug ß-lactam combination was highly synergistic with suppression of all drug resistant subpopulations over 5 days. Scanning electron microscopy and fluorescence microscopy for all imipenem combinations in time kill studies suggested a role for imipenem in suppression of long filamentous persisters, via the formation of metabolically active spheroplasts. To complement the imaging studies, salient transcriptomic changes were quantified using RT-PCR and novel cassette assay evaluated ß-lactam permeability. This showed significant upregulation of both spheroplast protein Y (SPY), a periplasmic chaperone protein that has been shown to be related to spheroplast formation, and penicillin binding proteins (PBP1, PBP2, PBP3) for all combinations involving imipenem. However, with aztreonam alone, pbp1, pbp3 and spy remained unchanged while pbp2 levels were downregulated by > 25%. Imipenem displayed 207-fold higher permeability as compared with aztreonam (mean permeability coefficient of 17,200 nm/s). Although the clinical combination of aztreonam/avibactam and ceftazidime has been proposed as an important treatment of MBL Gram-negatives, we report the first occurrence of long filamentous persister formation. To our knowledge, this is the first study that defines novel ß-lactam combinations involving imipenem via maximal suppression of filamentous persisters to combat PDR CDC Nevada K. pneumoniae.


Assuntos
Compostos Azabicíclicos , Ceftazidima , Klebsiella pneumoniae , Ceftazidima/farmacologia , Klebsiella pneumoniae/metabolismo , Aztreonam/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , beta-Lactamases/metabolismo , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
13.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301890

RESUMO

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Assuntos
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/toxicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
14.
Int J Biol Macromol ; 261(Pt 1): 129550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244734

RESUMO

The enzyme α-Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) is an exoglycosidase that hydrolyzes the terminal α-galactosyl moieties of glycolipids and glycoproteins. It is ubiquitous in nature and possesses extensive applications in the food, pharma, and biotechnology industries. The present study aimed to purify α-galactosidase from Klebsiella pneumoniae, a bacterium isolated from the human oral cavity. The purification steps involved ammonium sulfate precipitation (70 %), dialysis, ion exchange chromatography using a DEAE-cellulose column, and affinity monolith chromatography. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis was used to determine the molecular weight of the purified enzyme. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were determined by using p-nitrophenyl-α-D-galactopyranoside as substrate. The results showed that the purification fold, specific activity, and yield were 126.52, 138.58 units/mg, and 21.5 %, respectively. The SDS-PAGE showed that the molecular weight of the purified enzyme was 75 kDa. The optimum pH and temperature of the purified α-galactosidase were detected at pH 6.0 and 50 °C, respectively. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were 4.6 mM and 769.23 U/ml, respectively. α-galactosidase from Klebsiella pneumoniae was purified and characterized. (SDS-PAGE) analysis showed that the purified enzyme appeared as single band with a molecular weight of 75 kDa.


Assuntos
Klebsiella pneumoniae , alfa-Galactosidase , Humanos , alfa-Galactosidase/química , Klebsiella pneumoniae/metabolismo , Diálise Renal , Temperatura , Cromatografia de Afinidade , Concentração de Íons de Hidrogênio , Peso Molecular , Eletroforese em Gel de Poliacrilamida , Cinética
15.
Microbiol Spectr ; 12(2): e0380723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214522

RESUMO

The DedA superfamily is a highly conserved family of membrane proteins. Deletion of Escherichia coli yqjA and yghB, encoding related DedA family proteins, results in sensitivity to elevated temperature, antibiotics, and alkaline pH. The human pathogen Klebsiella pneumoniae possesses genes encoding DedA family proteins with >90% amino acid identity to E. coli YqjA and YghB. We hypothesized that the deletion of K. pneumoniae yqjA and yghB will impact its physiology and may reduce its virulence. The K. pneumoniae ΔyqjA ΔyghB mutant (strain VT101) displayed a growth defect at 42°C and alkaline pH sensitivity, not unlike its E. coli counterpart. However, VT101 retained mostly wild-type resistance to antibiotics. We found VT101 was sensitive to the chelating agent EDTA, the anionic detergent SDS, and agents capable of alkalizing the bacterial cytoplasm such as bicarbonate or chloroquine. We could restore growth at alkaline pH and at elevated temperature by addition of 0.5-2 mM Ca2+ or Mg2+ to the culture media. VT101 displayed a slower uptake of calcium, which was dependent upon calcium channel activity. VT201, with similar deletions as VT101 but derived from a virulent K. pneumoniae strain, was highly susceptible to phagocytosis by alveolar macrophages and displayed a defect in the production of capsule. These findings suggest divalent cation homeostasis and virulence are interlinked by common functions of the DedA family.IMPORTANCEKlebsiella pneumoniae is a dangerous human pathogen. The DedA protein family is found in all bacteria and is a membrane transporter often required for virulence and antibiotic resistance. K. pneumoniae possesses homologs of E. coli YqjA and YghB, with 60% amino acid identity and redundant functions, which we have previously shown to be required for tolerance to biocides and alkaline pH. A K. pneumoniae strain lacking yqjA and yghB was found to be sensitive to alkaline pH, elevated temperature, and EDTA/SDS and displayed a defect in calcium uptake. Sensitivity to these conditions was reversed by addition of calcium or magnesium to the growth medium. Introduction of ΔyqjA and ΔyghB mutations into virulent K. pneumoniae resulted in the loss of capsule, increased phagocytosis by macrophages, and a partial loss of virulence. These results show that targeting the Klebsiella DedA family results in impaired divalent cation transport and, in turn, loss of virulence.


Assuntos
Proteínas de Escherichia coli , Infecções por Klebsiella , Humanos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Klebsiella pneumoniae/metabolismo , Cátions Bivalentes/metabolismo , Cálcio/metabolismo , Ácido Edético , Fagocitose , Homeostase , Aminoácidos/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/genética
16.
ACS Infect Dis ; 10(2): 541-552, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38181222

RESUMO

AcrAB-TolC is a multidrug RND-type efflux pump that is widespread in Gram-negative bacteria. As the substrate-binding subunit, AcrB was shown to modulate antimicrobial resistance in Escherichia coli, but the influence of AcrB mutation on Klebsiella pneumoniae, a major clinical pathogen, has not been well-studied. The finding of an R716L mutation in AcrB in a clinical tigecycline-nonsusceptible K. pneumoniae S1 strain inspired us to probe the role of AcrB residue 716 in antimicrobial resistance. This residue was subsequently subjected to saturation mutagenesis, followed by antibiotic susceptibility tests, survival assays, and antibiotic accumulation assays, showing strong influences of AcrB mutation on antimicrobial resistance. In particular, resistance levels to azithromycin, tetracycline, tigecycline, and cefoxitin were significantly changed by AcrB mutation at residue 716. Mutations to charged residues, polar residues, and residues that disrupt secondary structures have particularly reduced the antimicrobial susceptibility of bacteria, except for azithromycin, and the impact is not due to the abolishment of the efflux function of the pump. Therefore, it is concluded that residue 716 is an important residue that significantly influences antimicrobial resistance in K. pneumoniae, adding to our understanding of antimicrobial resistance mechanisms in this key clinical pathogen.


Assuntos
Proteínas de Escherichia coli , Minociclina , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Azitromicina , Aminoácidos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Escherichia coli/metabolismo
17.
EMBO Mol Med ; 16(1): 93-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177534

RESUMO

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Klebsiella pneumoniae/metabolismo , Escherichia coli , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia
18.
J Microbiol Immunol Infect ; 57(1): 118-127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37963801

RESUMO

BACKGROUND/PURPOSE: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is capable of causing serious community and hospital-acquired infections. However, currently, the identification of CRKP is complex and inefficient. Hence, this study aimed to develop methods for the early and effective identification of CRKP to allow reasonable antimicrobial therapy in a timely manner. METHODS: K. pneumoniae (KP)-, K. pneumoniae carbapenemase (KPC)- and New Delhi metallo-ß-lactamase (NDM)- specific CRISPR RNAs (crRNAs), polymerase chain reaction (PCR) primers and recombinase-aided amplification (RAA) primers were designed and screened in conserved sequence regions. We established fluorescence and lateral flow strip assays based on CRISPR/Cas13a combined with PCR and RAA, respectively, to assist in the detection of CRKP. Sixty-one clinical strains (including 51 CRKP strains and 10 carbapenem-sensitive strains) were collected for clinical validation. RESULTS: Using the PCR-CRISPR assay, the limit of detection (LOD) for KP and the blaKPC and blaNDM genes reached 1 copy/µL with the fluorescence signal readout. Using the RAA-CRISPR assay, the LOD could reach 101 copies/µL with both the fluorescence signal readout and the lateral flow strip readout. Additionally, the positivity rates of CRKP-positive samples detected by the PCR/RAA-CRISPR fluorescence and RAA-CRISPR lateral flow strip methods was 92.16% (47/51). The sensitivity and specificity reached 100% for KP and blaKPC and blaNDM gene detection. For detection in a simulated environmental sample, 1 CFU/cm2 KP could be detected. CONCLUSION: We established PCR/RAA-CRISPR assays for the detection of blaKPC and blaNDM carbapenemase genes, as well as KP, to facilitate the detection of CRKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Sistemas CRISPR-Cas , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Klebsiella/tratamento farmacológico
19.
Microbiol Spectr ; 12(1): e0203023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032193

RESUMO

IMPORTANCE: Tigecycline, a glycecycline antibiotic with broad-spectrum activity against almost all Gram-positive and Gram-negative bacteria, is a highly concerned "last-resort" antibiotic. In addition to plasmid-hosted mobile tet(X) conferring high-level resistance to tigecycline, there are many reports suggesting increased expression of AcrAB-TolC efflux pump leads to tigecycline non-susceptibility. However, the role of mutations in AcrAB-TolC on tigecycline resistance has not been identified. This study reports a novel T188A mutation of the AcrA subunit of AcrAB-TolC complex in a clinical tigecycline-resistant Klebsiella pneumoniae strain and reveals the role of AcrA mutation on tigecycline resistance in K. pneumoniae. High prevalence of A188 type AcrA in hypervirulent multidrug-resistant K. pneumoniae indicates that mutations of the AcrAB-TolC complex may play a larger role in determining bacterial pathogenesis and antibiotic susceptibility than previously expected.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Minociclina/farmacologia , Aminoácidos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Mutação , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
20.
Microbiol Spectr ; 12(1): e0396623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38099618

RESUMO

IMPORTANCE: Bacteria use two-component regulatory systems (TCSs) to adapt to changes in their environment by changing their gene expression. In this study, we show that the EnvZ/OmpR TCS of the clinically relevant opportunistic pathogen Klebsiella pneumoniae plays an important role in successfully establishing lung infection and virulence. In addition, we elucidate the K. pneumoniae OmpR regulon within the host. This work suggests that K. pneumoniae OmpR might be a promising target for innovative anti-infectives.


Assuntos
Proteínas de Bactérias , Fatores de Virulência , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Regulação Bacteriana da Expressão Gênica , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...